Graphs with maximum degree D at least 17 and maximum average degree less than 3 are list 2-distance (D+2)-colorable
نویسندگان
چکیده
For graphs of bounded maximum average degree, we consider the problem of 2-distance coloring. This is the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbor receive different colors. It is already known that planar graphs of girth at least 6 and of maximum degree∆ are list 2-distance (∆ + 2)-colorable when ∆ ≥ 24 (Borodin and Ivanova (2009)) and 2-distance (∆ + 2)-colorable when ∆ ≥ 18 (Borodin and Ivanova (2009)). We prove here that ∆ ≥ 17 suffices in both cases. More generally, we show that graphs with maximum average degree less than 3 and ∆ ≥ 17 are list 2-distance (∆ + 2)-colorable. The proof can be transposed to list injective (∆ + 1)-coloring.
منابع مشابه
List coloring the square of sparse graphs with large degree
We consider the problem of coloring the squares of graphs of bounded maximum average degree, that is, the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbour receive different colors. Borodin et al. proved in 2004 and 2008 that the squares of planar graphs of girth at least seven and sufficiently large maximum degree ∆ are list (∆ + 1)-...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملOn Minimal Non-(2,1)-Colorable Graphs
A graph is (2, 1)-colorable if it allows a partition of its vertices into two classes such that both induce graphs with maximum degree at most one. A non-(2, 1)-colorable graph is minimal if all proper subgraphs are (2, 1)colorable. We prove that such graphs are 2-edge-connected and that every edge sits in an odd cycle. Furthermore, we show properties of edge cuts and particular graphs which ar...
متن کاملIncidence coloring of graphs with high maximum average degree
An incidence of an undirected graph G is a pair (v, e) where v is a vertex of G and e an edge of G incident with v. Two incidences (v, e) and (w, f) are adjacent if one of the following holds: (i) v = w, (ii) e = f or (iii) vw = e or f . An incidence coloring of G assigns a color to each incidence of G in such a way that adjacent incidences get distinct colors. In 2005, Hosseini Dolama et al. [...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1301.7090 شماره
صفحات -
تاریخ انتشار 2013